A NEW AND VERSATILE APPROACH TO THE PREPARATION OF VALUABLE DEOXYNUCLEOSIDE 3'-PHOSPHITE INTERMEDIATES

J.E. Marugg, A. Burik, M. Tromp, G.A. van der Marel and J.H. van Boom Gorlaeus Laboratories, P.O. Box 9502, 2300 RA Leiden, The Netherlands

Abstract: The easily accessible and crystalline monofunctional phosphitylating reagent bis-(diisopropylamino)chlorophosphine has been used for the synthesis of phosphoramidites and Hphosphonates of d-nucleosides and, also, the formation of 3'-5'-internucleotidic phosphonate bonds.

The introduction of more reliable and versatile phosphitylating reagents has made the phosphite-triester approach, as originally devised by Letsinger et al.¹, a powerful method for the preparation of deoxyoligonucleotides on a solid-support. For instance, the development and application² of various methyl monochlorophosphoramidites of secondary amines such as N,N-diisopropylamino (i.e. reagent Ia) or N-morpholino was a major breakthrough in the phosphite-triester methodology. Further, the advent of a new class of phosphitylating reagents³ (e.g. Ib), in which the protective groups at P(V) could be deblocked selectively by mild basic hydrolysis, increased the effectiveness of the unmasking of the protected intermediate DNA fragments obtained by solid-support synthesis (i.e. P(V) as well as 0- and N-acyl protective groups are removed in one step by ammonolysis). Finally, the use⁴ of reagent Ic enabled the *in-situ* preparation of properly-protected d-nucleoside 3'-phosphoramidites (i.e. compounds IV; R=Me), which play a pivot role in the solid-phase synthesis of DNA. Recently, we showed⁵ that the easily accessible and crystalline reagent bis(N,N-diisopropylamino)chlorophosphine (Id) could be used for the preparation of Ie, which showed to be an improvement⁶ over the earlier mentioned phosphitylating reagent Ic.

X - P-Y	(I)a: X =Cl;Y = N(iPr) ₂ ;Z = OMe	d: X = Cl; Y = Z = N{iPr}2
Z	b: $X = CI_1 Y = N(i Pr)_2$; $Z = OCH_2CH_2CN$	e: X = Y = N(iPr) ₂ ; Z = OCH ₂ CH ₂ CN
	c: X = Y = N(i Pr) ₂ ; Z = OMe	$f: X = Y = Cl; Z = N(iPr)_2$

We now report that reagent Id can be used successfully towards the synthesis of 3'-phosphoramidites IV carrying different protective groups at P(III), H-phosphonates VII (R=H) and the introduction of 3'-5'-internucleotidic phosphonate linkages (see compound X).

The preparation of the d-nucleoside 3'-phosphoramidites IV was performed as follows. To a stirred solution of a 5'-O,N-acyl-protected⁷ d-nucleoside II (1.0 mmol) under a blanketing atmosphere (N₂) in dry dioxane (5 ml) containing triethylamine (1.5 mmol) was added crystalline Id (1.2 mmol). TLC-analysis, after 20 min, indicated complete conversion of II into a product with a higher R_f -value. Removal of the (Et₃)NHCl-salts by filtration and concentration of the filtrate *under vacuo* afforded crude III. The latter was dissolved in acetonitrile (5 ml) and the appropriate alcohol (1.5 mmol) together with 1H-tetrazole (0.5 mmol) was added. TLC- 2272

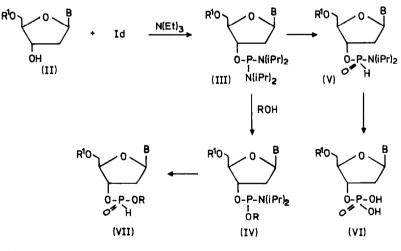
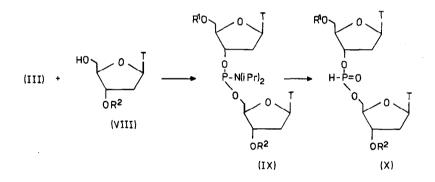

analysis, after 30 min, showed the reaction to be complete. Further work-up and purification by short-column chromatography afforded homogeneous IV (see Table for further information).

Table: Yields and other relevant data on compounds IV.

Starting product II	Product IV yield (%) ^{a)}	³¹ P-NMR data of IV ^{b)}	R _f -values of IV ^{C)}
B=T	75 (R=CH ₂ CH ₂ CN)	149.0; 148.9	0.53; 0.49
B=A ^{b z}	80 (R=CH ₂ CH ₂ CN)	149.0	0.61; 0.58
B=C ^{tol}	85 (R=CH ₂ CH ₂ CN)	149.3; 149.0	0.55; 0.49
$B=G^{dpa}$	70 (R=CH ₂ CH ₂ CN)	148.9	0.25; 0.14
B=T	73 (R=CH ₂ CH=CH ₂)	148.5; 148.2	0.60
B=T	85 [R=CH ₂ C ₆ H ₄ (2-NO ₂)]	149.7; 149.3	0.46

a) Based on II. b) Solvent $CDC1_3$; $\delta^{-31}P$ values expressed in p.p.m. relative to the external reference 85% H_3PO_4 . c) Eluens: EtOAc/CH₂Cl₂/(Et₃)N, 50/45/5, v/v.

It can be seen in the Table that the yield of IV $(B=G^{dpa})$ is not as high as the yields of the other derivatives of IV. Analytical $({}^{31}P-NMR$ and TLC) data indicated that the relatively low yield of IV $(B=G^{dpa})$ is due to concomitant phosphitylation by Id of the lactam function in the guaninine moiety of II $(B=G^{dpa})$.


R¹=4,4'-dimethoxytrity1

Attempts to isolate key intermediate III (B=T) were, due to the extreme acid lability of the bis-amidite function, not successful: homogeneous III (B=T, δ^{-31} P 116.1 p.p.m.) could be isolated after silica gel chromatography in a yield of 30%. Treatment of *in-situ* prepared III (B=T; 1 mmol) in acetonitrile (5 ml) with 1H-tetrazole (0.5 mmol) and water (0.1 ml) for 30 min at 20^oC gave, after work-up and purification by column chromatography, homogeneous⁸ V (B=T) in high yield. Acidolysis of V (B=T) with HOAC/H₂O (8/1, v/v) for 8 h at 20^oC afforded 3'-

phosphonate VII⁸ (B=T; R=R¹=H) in an excellent yield.

The 3'-phosphoramidites IV are, apart from suitable building units for the solid-phase synthesis of DNA, valuable starting compounds for the preparation of compounds VII (R=H). For example, conversion of IV (B=T; R=CH₂CH₂CN or CH₂CH=CH₂), using the same conditions as mentioned for the preparation of V (B=T), afforded VII (B=T; R=CH₂CH₂CN or CH₂CH=CH₂) in a good yield. Removal of the β-cyanoethyl group with n-butylamine⁹ or the allyl group with $Pd[P(C_{6}H_{5})_{3}]_{4}/P(C_{6}H_{5})_{3}/n$ -BuNH₂¹⁰ afforded, after work-up, the phosphonate derivative VII (B= T; R=H) in an excellent yield.

The scope of intermediate III was further illustrated by the synthesis of the DNA dimer X containing a 3'-5'-internucleotidic phosphonate linkage. The preparation of precursor IX was easily accomplished as mentioned above for the conversion of III into IV, to give, after work-up and purification, pure IX in an acceptable yield. Thus coupling of III (B=T; 1 mmol) with VIII (R²=benzoyl; 1.1 mmol) under similar conditions as used for the conversion of III (B=T) into IV (B=T) afforded, after work-up and column chromatography, pure⁸ IX in a yield of 70%. The latter was quantitatively converted into X⁸ by the same conditions as applied for the preparation of VII (B=T; R=CH₂CH₂CN) starting from IV (B=T; R=CH₂CH₂CN). Dimer X thus obtained was oxidized ($1_2/h_2O/C_6H_5N$) followed by acidolysis (removal of R¹) and finally ammonolysis (removal of R²), to yield, after DEAE-Sephadex A25 chromatography, the fully-deprotected dimer d-TpT, which was in every aspect - ^{31}P - and ^{1}H -NMR spectroscopy - identical with an authentic sample of d-TpT.

In conclusion, the easily accessible reagent Id is an alternative for the recently introduced¹¹ bifunctional reagent If for the preparation of compounds IV. Further, the pathway we followed for the formation of X, starting from in-situ prepared III, may open the way to a convenient approach towards the synthesis of DNA on a solid-support¹². Finally, it is interesting to note that the conversion of III into V or VII (R=H) may be regarded as a new and mild procedure for the introduction¹³ of phosphate functions in organic molecules.

REFERENCES AND NOTES

- R.L. Letsinger, J.L. Finnan, G.A. Heavner and W.B. Lunsford, J. Am. Chem. Soc. <u>97</u>, 3278 (1975).
- 2. M.A. Dorman, S.A. Noble, L.J. McBride and M.H. Caruthers, Tetrahedron 40, 95 (1984), and references cited therein.
- 3. So far the following protective groups at P(V), which can be removed by ammonolysis in a phosphite-triester approach, have been published. a) The -CH₂CH₂CN group; N.D. Sinha et al., Nucl. Acids Res. <u>12</u>, 4539 (1984). c) The -CH(Me)CH₂CN or -C(Me)₂CH₂CN groups; J.E.

Marugg et al., Recl. Trav. Chim. (Pays-Bas) 103, 97 (1984). c) The -CH₂CH₂SO₂Me group;

- C.A.A. Claesen et al., Tetrahedron Lett. 25, 1307 (1984). d) The -CH₂CH₂SO₂C₆H₅ group; N. Balgobin et al., Acta Chem. Scand. B<u>39</u>, 883 (1985).
 a) S.L. Beaucage, Tetrahedron Lett. <u>25</u>, 375 (1984). b) A.D. Barone, J.-Y. Tang and M.H. Caruthers, Nucl. Acids Res. <u>12</u>, 4051 (1984). c) M.F. Moore and S.L. Beaucage, J. Org. Chem. 50, 2019 (1985).
- 5. J. Nielsen, J.E. Marugg, J.H. van Boom, J. Honnens, M. Taagaard and O. Dahl, J. Chem. Res. (S), 26 (1986).
- 6. J. Nielsen, J.E. Marugg, M. Taagaard, J.H. van Boom and O. Dahl, Recl. Trav. Chim. (Pays-Bas 105, 33 (1986).
- 7. The exocyclic amino groups of d-A, d-G and d-C are protected with the benzoyl (bz), diphenylacetyl (dpa) and 2-methylbenzoyl (tol) groups, respectively. 8. ¹H- and ³¹P-NMR data of compounds V, VII, IX and X.
- V (B=T): δ-³¹P (CDCl₃) 13.75; 13.41 (JP-H 638 Hz). δ-¹H (CDCl₃) 8.5 (d); 5.3 (d), (2xP-H, JP-H 638 Hz); 7.60 (s), 7.59 (s), (2xH6); 6.5 (m, 2xH1'); 1.42 (s), 1.38 (s), (2x5Me). VII (B=T; R=H): δ-31P (D₂O; P-H decoupled) 2.57. (P-H coupled) 6.43, 6.31, -1.21, -1.33 (JP-H 617 Hz). δ-¹H (CD₃OD) 8.3 (s), 5.1 (s). (2xP-H, JP-H 632 Hz); 7.7 (s, H6); 6.3 (s, H1'); 1.3 (s, 5Me). IX (R¹=DMTR; R²=Bz): δ⁻³¹P (D₂O) 149.68, 149.28. X (R^1 =DMTR; R^2 =Bz): $\delta^{-31}P$ (D₂O) 10.21, 9.42 (JP-H 725 Hz).
- 9. P.J. Garegg, T. Regberg, J. Stawińsky and R. Strömberg, Chimica Scripta 25, 280 (1985). 10. Y. Havakawa, M. Uchivama, H. Kato and R. Noyori, Tetrahedron Lett. 26, 6505 (1985).
- 11. T. Tanaka, S. Tamatsukuri and M. Ikehara, Tetrahedron Lett. 27, 199 (1986).
- 12. In a recent publication [B.C. Froehler and M.D. Matteucci, Tetrahedron Lett. 27, 649 (1986)] the preparation of immobilized X was accomplished by coupling VII (B=T; $R^{1}=DMTR$; R=H) in the presence of pivaloy1 chloride with VIII (R^2 =succiny1 silica).
- 13. A preliminary experiment showed (31P-NMR data) that V (B=T; R1=DMTR) could be oxidized, although slowly, with $I_2/H_2O/C_6H_5N$ to afford a 3'-diisopropylamino phosphate intermediate, which was rapidly hydrolyzed with acid (pyridinium-HCl salt), to give VI (B=T; R¹= DMTR) identical with authentic VI [δ -31P (D₂O) -2.0 p.p.m.] prepared by a phosphotriester approach [C.T.J. Wreesmann et al., Tetrahedron Lett. 26, 933 (1985)].

(Received in UK 17 March 1986)